The Current And Coming Recommendations From ICRP

Dr Jack Valentin - Scientific Secretary, ICRP

- International Commission on Radiological Protection *ICRP*: Who, why, what?
- Sources, doses, dose response

 Linear, no threshold the best current approximation
- ICRP 60
 Justification optimisation limits
 Emphasis shifting from society to individual
- The next, 2005, Recommendations

 Justification (political) limits & constraints optimisation
 Include non-human species

ICRP, an Independent Registered Charity

Established to advance for the public benefit the science of Radiological Protection,

in particular by providing recommendations and guidance on all aspects of protection against ionising radiation.

Primary Aim of Our Recommendations

To provide an appropriate standard of protection for man

without unduly limiting the beneficial practices giving rise to radiation exposure

Risks: The Basic Assumptions

- High doses → deterministic harm due to cell killing
- Stochastic late harm: cancer, hereditary, other LNT?

TERPINTERNATONAL COMMISSION ON RADDLOGIAL PROTECTION -----

The ICRP Publication 26 System

- Prevent deterministic, minimise stochastic harm
- Justification by Cost-Effectiveness Analysis

 More good than harm to society
- OPTIMISATION by Cost-Benefit Analysis ALARA; maximise net collective benefit
- Dose limits

'How much does it cost; how many lives are saved?'

The ICRP Publication 60 System

- Prevent deterministic, minimise stochastic harm
- Justification
- Optimisation: CBA & other means
 'Constrained by restrictions on the doses to individuals (Dose Constraints) ... so as to limit the inequity likely to result from the inherent economic and social judgements'
- Dose and risk limits

Ethical Basis for the ICRP System

Utilitarian ethics Judge actions by the consequences	Deontological ethics Some duties are imperative
Justification Do more good than harm	
Optimisation Maximise good > harm	
	Limitation No individual unduly harmed

Published Recommendations Since 1990

Publ. no.	Title	
62	protection in biomedical research	
63	protection of the public in a radiological emergency	
64	64potential exposure: a conceptual framework	
65	Protection against Radon-222	
68	Dose coefficients for workers	
75	General principles for radiation protection of workers	
76	potential exposure:selected radiation sources	
77	policy for the disposal of radioactive waste	
81	disposal of long-lived solid radioactive waste	
82	Protection of the public in prolonged radiation exposure	

Dose Levels, Limits, Constraints...

Almost 30 different numerical values, based on

- Individual annual fatal risk
- Multiples/fractions/maximum values of natural background
- Formal differential cost-benefit analysis

Spanning 5 orders of magnitude...

New Basic Recommendations Ahead

- Revision every ~15 years

 Due again ~2005
- Repeat or develop?
 Logical but overwhelming
 Public dose limit not helpful
 Collective dose often misused
- Rec's at the beginning of the 21st century

Utilitarian → egalitarian
Anthropocentric → holistic
Constraints
Stakeholder optimisation

Dose Lim it for the Public

- Sum of contribution from many sources
- Can only be regulated at source
- Does not include the dominant natural background
- Does not apply to interventions
- Does not apply in emergencies

...So, ICRP 60 (1990) Is Still Good, But Will Be Updated In 2005:

- 'Something' is due in 2005
- Biological assumptions need updating (relatively minor)
- Unnecessarily complicated; confusing terminology
- Shifting values: emphasising individual over society
- The dose limit for the public is unhelpful
- Focusing on man alone is insufficient
- Existing recommendations need to be consolidated...
- And can surely be simplified from almost 30 values!

TERPINTERNATIONAL COMM SSION ON RADIOLOGICAL PROTECTION	
---	--

Components of The 2005 System: The Basic Recommendations...

IGR	MTERNATIONAL COMMISSION ON PARTILOGICAL DEOTECTION	
	NIERWALDNAL COMM ESEN ON RADELOGEAL PROTECTEN	

Features, draft 2005 Recommendations

- Quantities in radiological protection
- Biological aspects
- General system of protection
- 'Quantitative recommendations' (limits, constraints)
- Optimisation of protection
- Exclusion from the system
- Medical exposures
- Potential exposures
- Radiological protection of the environment

Effective Dose

$$\boldsymbol{E} = \sum_{\mathbf{T}} \boldsymbol{w}_{\mathbf{T}} \sum_{\mathbf{R}} \boldsymbol{w}_{\mathbf{R}} \boldsymbol{D}_{\mathbf{T},\mathbf{R}}$$

Major changes:

- New values of w_R are proposed:

 for protons, reduced from 5 to 2

 for neutrons < 1 MeV, reduced to ~ ½, continuous curve recommended
- New values of w_T are proposed: -for gonads, risk is reduced to $\sim \frac{1}{4}$ (UNSCEAR 2001)

Biological Aspects

Induction of tissue reactions

RBE-weighted absorbed dose
(Gy-Eq?)

Cancer

M echanisms Epidemiology

H ereditary effects

Embryo and fetus

G enetic susceptibility

N on-cancer diseases

Detriment Coefficients (% Sv-1)

Exposed population	Lethality adjusted cancer	Lethality adjusted heritable	Detriment 2005	Detriment Pub.60
	risk	effects		
W hole population	6.2	0.2	6.5	7.3
Adult workers	4.8	0.1	4.9	5.6

The 2005 System of Protection

JUSTIFICATION

QUANTITATIVE RECOMM ENDATIONS

OPTIM ISATION

Justification

- Recognise distribution of responsibilities

 Justification, primarily at the political level (can be delegated)
- Radiological considerations are but one input Important, but rarely overriding
- Recommendations apply to practices once these are declared justified
- Medical radiation requires separate treatment

 Justify: Radiation Procedure Application to this patient

The 2005 System of Protection

JUSTIFICATION

QUANTITATIVE RECOMM ENDATIONS

OPTIM ISATION

Individual-and Source-Related

INDIVIDUALS are protected from ALL regulated sources by the from a SINGLE source by the DOSE LIM ITS

IND IV ID UALS are protected DOSE CONSTRAINT

The 2005 System of Protection

JUSTIFICATION

QUANTITATIVE RECOMM ENDATIONS

CONSTRAINTS ON SOURCES

R estrictions for the most exposed individuals -set by ICR P, and by International/N ational Agencies

OPTIM ISATION

	Maxinum Constraints Effective Dose in a year (m Sv)
100	 Em ergencies: w ork; evacuation; relocation H igh levels of existing controllable exposures Inform ation, training, m on itoring N o individual/societal benefit above this constraint
20	 Em ergencies: Sheltering; stable iodine N orm al: O ccupational exposure Existing controllable exposures, e.g. radon Com forters and carers to patients Inform ation, training, m on itoring or assessment D irect or indirect benefit to the individual
1	Normal situations No information or training, no individual dose assessment Societal, but no individual direct benefit
0.01	• M inimum value of any constraint

The 2005 System of Protection

JUSTIFICATION

QUANTITATIVE RECOMM ENDATIONS

INDIVIDUAL LIM ITS

A lready exist in Basic Safety Standards

No individual is exposed to unacceptable regulated risk
in normal situations

OPTIM ISATION

ICRP Yardstick for Gauging Limits

- 1928 1966: Magnitude of risk(s) unknown Hence choice of limits rather arbitrary
- 1977: Comparison with 'safe' industries

 'Average' worker average risk

 Highest exposure maximum risk

 Public: Divide by 10, factor in 'accepted' road traffic fatalities
- 1990: Workers multiattribute risk, public –normal variations in natural background

 Not safe (!!), not welcome, but hardly unacceptable
- 2005/6: Natural background the primary yardstick

The International commission on radiological protection	N
---	---

Dose Lim its For Practices

PUBLIC

WORKERS

1 m Sv in a year

20 m Sv per y averaged over 5 y

-exceptionally, 1m Sv/yr averaged over 5 years

-100 m Sv in 5 years and less than 50 m Sv in one year

0 rgan or tissue	R adiation weighted	dose (m Sv/yr)
	0 ccupational	Public
Lens of the eye	150	15
The skin	500	50
H ands and feet	500	_

The 2005 System of Protection

JUSTIFICATION

QUANTITATIVE RECOMM ENDATIONS

OPTIM ISATION

A duty: reduce doses to achieve a higher level of protection

-the responsibility of operators and national authorities
AT THE HEART OF SUCCESSFUL PROTECTION

The Protection of Groups

- Collective Dose:
 - the product of mean dose and number exposed
 - a legitimate quantity
 - but aggregates information excessively
 - and therefore, is of limited utility
- For making decisions, information should be presented in a matrix

	F,	=		
	LT.	۱T	INTERNATIONAL COMM ISSION ON RADIOLOGICAL PROTECTION	

The Matrix...

- *Mininmum* information for workers:
- Number exposed
- Average dose
- Dose range?
- Task-related dose?
- Etc

Potential Exposures

DOSE CONSTRAINT RISK CONSTRAINT

Risk'=

Prob. of receiving dose * Prob. of detrim ent given that dose R isk Constraint restricts R isk ' = prob. of attributable death

Effective Dose > 100 m Sv: non-stochastic reactions possible

→ Conditional prob. of detriment, given dose = 1

HotParticles'=PotentialExposures;RiskConstraintapplies

Major accidents - more complicated!

YOU are responsible for safety - and outside the nuclear fuel cycle, nobody is there to help you!

NTERPATERNATURAL COMM ISSUM ON RADDLOG GAL PROTECTUM

Protection of Non-Human Species

- This is **NOT** driven by concerns of existing radiation hazards
- It fills a conceptual gap

 We need to DEMONSTRATE that the environment is adequately protected
- Several countries are already implementing environmental radiation standards

NTERNATIONAL COMM ISSIDN ON RADIDLOGICAL PROTECTION	·
---	---

Protection of Non-Human Species

- A practical, simple policy
- Agreed quantities and units

- Dose models for reference fauna and flora
- Basic knowledge of radiation effects

• A means to demonstrate compliance

		\vdash	
	1		INTERNATIONAL COMMISSION ON RADIOLOGICAL PROTECTION

Components of
The 2005 System:
... And Foundation Documents

Schedule

- 1999 2003: Conceptual discussion
- May 2004: Proposal launched at IRPA 11, Madrid ...and many other fora
- June 2004: Text released for consultation, 6 months
- Mid- 2005: Earliest possible date of ICRP adoption
- 2006: Likely date of printing, 'P100' and 'Foundation documents'
- 2008: 'Son of P30' completed
- 2009: Likely first instances of legal implementation

NTERNATIONAL COMM ISSION ON RADIOLOGICAL PROTECTION

In Summary...

- New basic ICRP recommendations coming
- Simpler presentation, more egalitarian
- LNT-based, but using matrix rather than collective dose
- Holistic, not anthropocentric
- Justification: primarily societal
- Constraints and limits for basic protection
- Source-related optimisation with stakeholder involvement, a further duty

NTERNATONAL COMM SSON ON RADDLOG CAL PROTECTON	
--	--