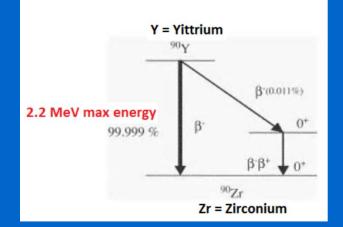
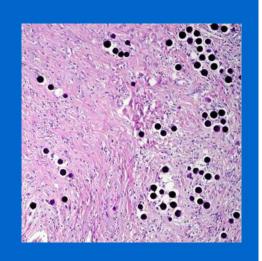

A practical measure in personnel dose reduction for/90X-micropsheres liverrected radioembolization: from patient ward adiology department to Qusen Mary Hos

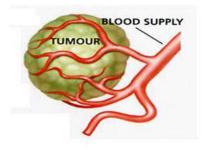
Martin Law, PhD, DABSNM, DABMP Physicist ic Radiology/QMH

What is Radioembolization?

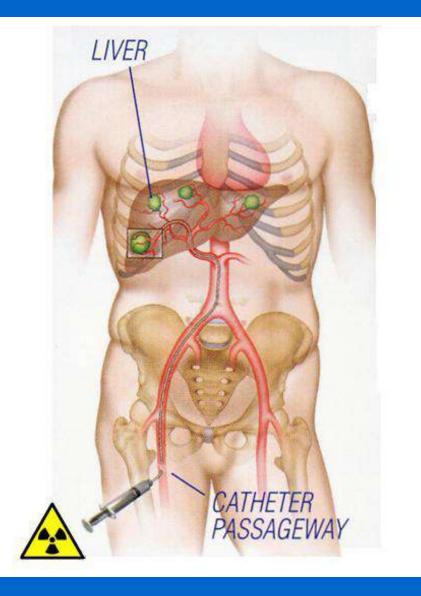
- Radiation therapy and embolization to treat cancer of the liver, also known as Selective Internal Radiation Therapy (SIRT)
- Embolization is used to occlude blood flow.
- Radiation therapy uses ionizing radiation to kill cancer cells and shrink tumors.
- Radioembolization involves placing a radioactive material, tiny glass or resin beads called microspheres directly at the tumor site.
- Multidisciplinary nature involving oncologist, nuclear medicine physician, interventional radiologist & medical physicist


Flow chart to begin with



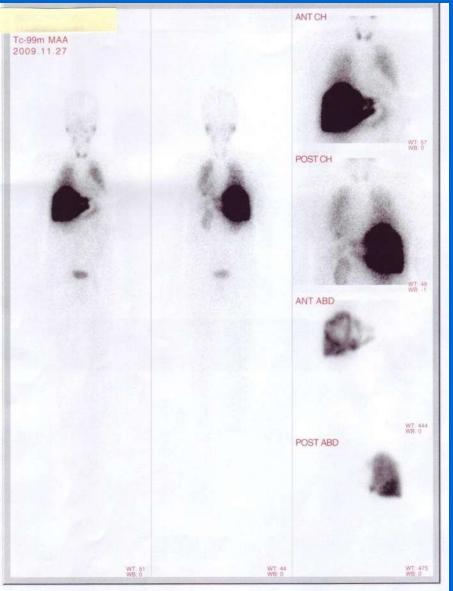

Some basics of 90Y & µ-spheres

- Yttrium-90 is a high energy 'pure' beta emitting isotope: good for therapy; no good for imaging
- Mean energy: 0.93 MeV (2.27 MeV maximum)
- Half-life time: 64.1 hours
- Range max: 11 mm in tissue
- pair production abundance of ⁹⁰Y (32 x 10⁻⁶)

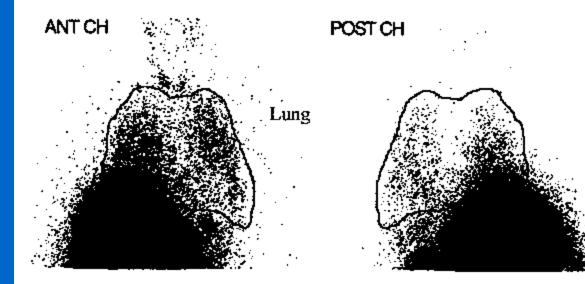


Y-90 agents currently available: TheraSphere (glass) & SIR-Sphere (resin)

	TheraSphere	SIR-Sphere
Delivery agent	Glass beads	Resin beads
Particle size	20-30 µm	20-60 µm
Energy per particle	2500 Bq	50 Bq
Typical dose	1=4 GBq (120 Gy)	1=2 CBq (30=50 Gy)
Particles per dose	0.4-0.8 million	20-40 million
Embolic effect	Minimal	Variable
FDA approval	HCC ¹	Colorectal metastases
Manufacturer	Nordion (Canada)	Sirtex Medical (Australia)

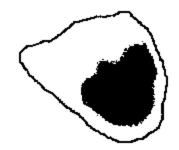

Experience in QMH: max activity SIR-Sphere=2.5 GBq; max acitivty of TheraSphere= 4.5 GBq

How it works?


- Local delivery of the MAA (diagnostic) or µ-particles (therapy) into the tumor bed via hepatic artery
- For ^{99m}Tc-MAA, mean particle size 50 μm, for ⁹⁰Y-sphere 30 μm, so they are comparable in size
- These particles are small enough to reach the capillary bed, but large enough to be trapped there.
- The same procedure is repeated for ^{99m}Tc-MAA and ⁹⁰Y-sphere

Use of 4 mCi ^{99m}Tc-MAA diagnostic NM scan Suggest to NM image right after the Tc99m-MAA infusion.

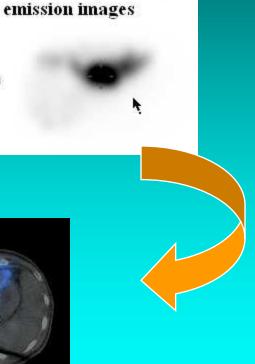
- Geometric mean
- Lung shunting= Lungs/(Lungs+Liver)*100%
- TN ratio= Tumor/(normal liver)
- For a suitable patient candidate: low lung shunting and high TN ratio


Example of lung shunting & TN ratio calculation

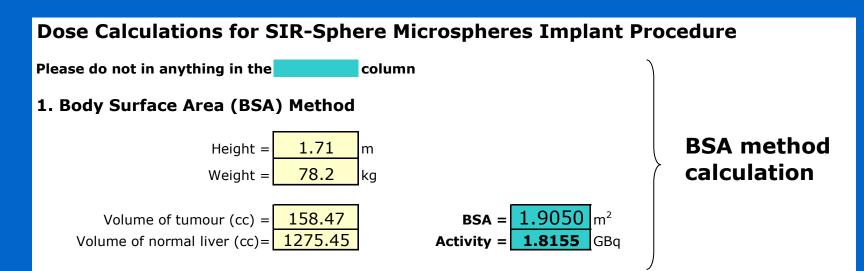
ANT ABD

POST ABD

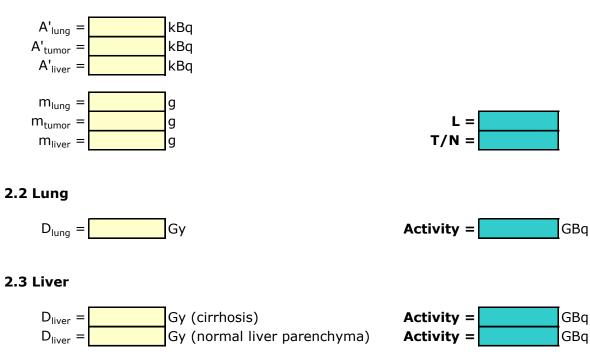
Ant Lung Counts: Post Lung Counts; Geometric Lung Counts:	
Geometric Liver Counts	1253663 556942 : 835594 2600
Ant Tumour Counts: Post Tumour Counts; Geometric Tumour Cou Tumour Area;	357027
Normal Liver Counts: Normal Liver Area:	249717 8684
Tumour Count Density: Liver Count Density: (Exclude Tumour)	305.78 26.75


Lung Shunting: 2.19% Turnour-to-Liver Ratio: 10.63

SPECT/CT is used nowaday:



SIRT dose calculation (BSA method)


$$Radioactiv ity(GBq) = (BSA - 0.2) + \frac{\text{tumor volume}}{\text{tumor volume} + \text{normal liver volume}}$$

$$BSA(m^2) = 0.20247 * Height(m)^{0.725} * Weight(kg)^{0.425}$$

2. Partition Model for Calculation of Dose/Activity of SIR-Spheres Microspheres

2.1 Breakthrough Scans

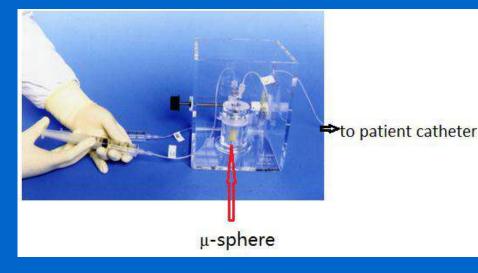
Patient radioactivity calculation for TheraSphere

Patient Name:		Patient ID:	Target Tissue:	whole liver		
Target Volume (cc	953.4		Target Liver Mass (kg):	0.982		
Desired Dose (Gy)	: 99					
Time Zone Variand	ce (h):	(see Time Zones tab for details)	Places in this Time Zone:	Indonesia		
Lung Shunt Fracti	on (% LSF): 10.45%			Thailand		
Anticipated Resid	ual Waste (%): 1.00%	Optional estimated value				
Previous Dose to	the Lungs (Gy): 0	l 🔥				
Required Activity	at Administration (GBq):	2.19 This value is corrected	d for LSF and Residual Waste	e if values are e	entered above.	
	Calculated Dose to Lungs (Gy):	11.35 Dose within recommended limit for trea	e Limit to the Lungs per treatm	nent (Gy): 3		age Inser
c	Cumulative Dose to Lungs (Gy):	11.35 Cu	mulative Dose Limit to the Lu	ings (Gy): 5	50	011010101
	Lung Dose	within recommended cumulative	imit for treatment			

To prepare the Tx session

Dose package & dispense

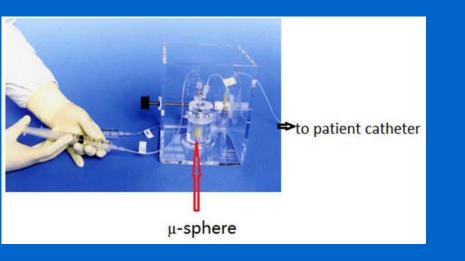
to dispense the prescribed radioactivity

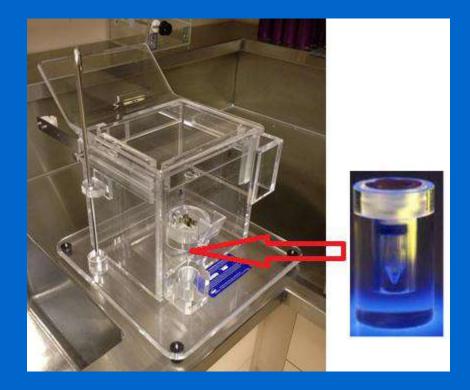

Items needed for SIRT Tx session

Steps to dispense the µ-spheres patient dose in lab

Assume 3 GBq in 5 ml on Tx day. Patient prescription = 2 GBq I need to draw (5*2/3 ml) =3.33 ml Then I draw just a bit more than 3.33 ml. Slowly infuse into the v-vial Actual radioactivity in v-vial =(initial act of glass vial - remaining act of glass vial act of the syringe)

IR room radiation protection: before the SIRT session



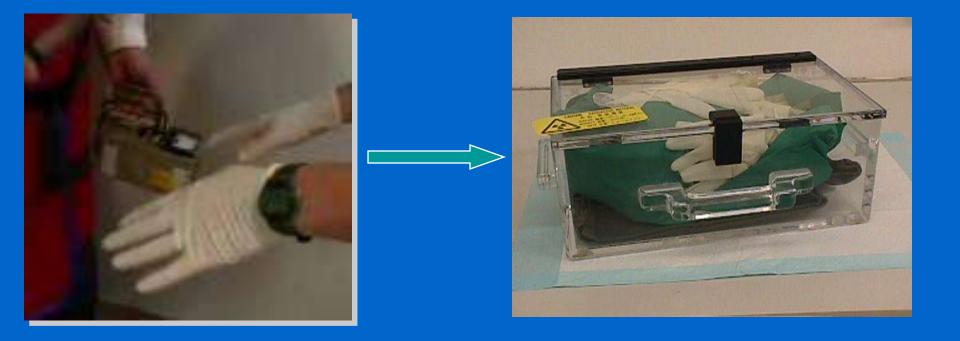

- Protective wrap around the x-ray head & detector
- Place an absorbent paper where the injetion trolley is located to localize any possible radiation spillage

Delivery technique about the same for the two types of spheres

SIR-Sphere delivery box

TheraSphere delivery box

Personnel radiation protection in IR room: immediately after SIRT infusion: use of lead lined blanket


Dose measurement for radiologist with and without using the blanket				
	Normalized average dose rate			
	[µSv/(hr∙GBq)]			
Use of lead	Radiologist	At 10 cm above		
lined blanket	position	patient abdomen		
No	2.91	8.41		
Yes	1.32	3.10		
p-value	< 0.01	< 0.01		

Occupation dose for different hospital personnel handling the Y90 patient

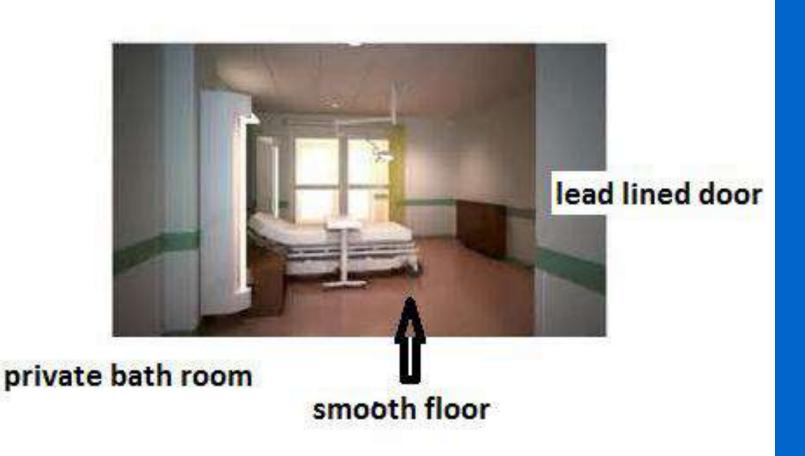
Staff	Procedure	Estimated	Occupational
		time spent (min)	dose (µSv)
Radiologist	Puncture site pressing	20	0.92 on hand 0.4 under apron
Nurse	Patient transfer	5	0.52
Porter	Patient transport	5	0.22

Background about 6 µSv in QMH area

Personnel radiation survey after treatment: any contaminated items are collected for 'store & decay'

Radiation survey the IR room after treatment

absorbent placed before SIRT

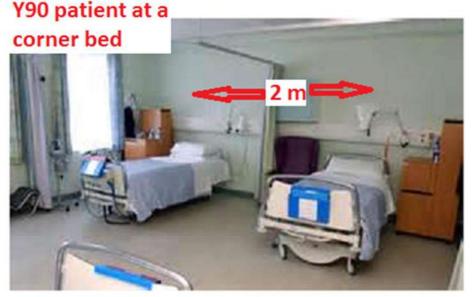

What radiation protection to patients after SIRT?

- Patients will be under clinical observation after SIRT
- If infused Y90 ≥ 1.5 GBq, patient has to stay in isolation ward with private toilet facility according to HA Code of Practice on radiation safety 2011.
- Patient will stay in isolation ward until his/her remaining Y90 < 1.5 GBq

An example: patient given 4.75 GBq on 5/May/15 noon (Tue) This patient Y90 reduced to 1.5 GBq after 4.5 days on 9/May Sat late night (4.5 days) The patient was discharged from isolation ward on Sunday 10/May/15 9:00 am.

An example of isolation room for radiation protection purpose

Another example of isolation room: patient is confined in the room

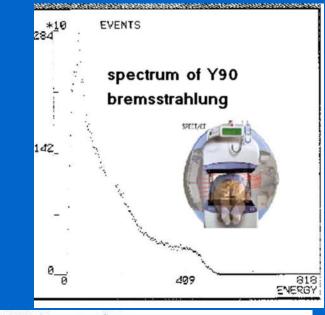

Isolation room really tight in booking!!! What to do?

- Similar Y90 of about 5 GBq is quite common in TheraSphere
- In this, patient has to be staying in isolation room for about 5 days!!

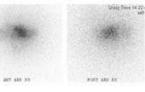
- If a Centre is without isolation room and SIRT has to be done, what should be done?
- If the isolation room, currently occupied by the SIRT patient, has to be used for other urgent needs, what should be done?

A possible solution & justification:

- by allocating the ⁹⁰Y treated patient at a corner bed in a common ward.
- the lead lined blanket is used to cover the radioembolized region.


- The dose rate at 1m is calculated to be 1 µSv/hr (assumed 2.1 GBq infusion).
- Patient separation about 2 m in ward, dose rate at the next patient will be about 0.25 µSv/hr (bkg level in most HKG **locations**) SIRT patient will not expose the next patient significantly.

Patient urine


- No observable Y90 urine content from post Tx WBS (literature quotes very little in the resin spheres for the 1st 24 hours post SIRT; the glass spheres are not known to be present in any body fluid)
- Advise patient to flush toilet twice after use
- In other words, radioembolized patients can use common toilet facility as other non-radiation patients do.

What do we learn from the post Tx scan? Radioactive urine?

- For documentation purpose
- Use bremsstrahlung scan emitted from patient
- Dual head gamma camera using medium energy parallel hole collimators
- Whole body scan and localized abdominal view (conventional gamma camera before and now SPECT/CT)
- NO OBSERVABLE Y90 IN BLADDER, URINE IS COLD!

post SIRT WBS scan using bremsstrahlung

No radioactivity in bladder => urine contains no Y90 content

post

Conclusion for radiation protection in SIRT:

- To understand the basics of Y90, delivery method & patient management procedures
- To understand the personnel concern about radiation in SIRT procedures
- How to prepare for the contamination in IR room
- To understand bremsstrahlung emission from patient
- How to reduce the bremsstrahlung irradiation to personnel
- personnel dose measurement
- How to apply the radiation protection measure in patient ward

